cadence conformal lec user guide

Cadence Conformal LEC User Guide: Mastering Logical Equivalence Checking

cadence conformal lec user guide is an essential resource for engineers and
designers working with digital verification and formal equivalence checking.
Whether you are a newcomer to the field or an experienced professional aiming
to streamline your design verification process, understanding how to
effectively use Cadence Conformal LEC (Logical Equivalence Checking) can
significantly enhance your workflow. This article unpacks the essentials of
Cadence Conformal LEC, offering a clear path to mastering its features,
commands, and best practices while naturally weaving in related concepts such
as RTL verification, netlist comparison, and design signoff.

What is Cadence Conformal LEC?

Before diving into the user guide specifics, it’s important to understand
what Cadence Conformal LEC is and why it’s crucial for modern chip design.
Cadence Conformal LEC is a tool designed to perform logical equivalence
checking between two versions of a digital design. It compares RTL (Register
Transfer Level) code with synthesized netlists, or two netlists, to ensure
they are functionally equivalent. This verification step is key to catching
discrepancies introduced during synthesis, optimization, or design changes,
thereby preventing costly errors late in the design cycle.

Why Use Logical Equivalence Checking?

Logical equivalence checking is a cornerstone of design verification because
it provides:

— Assurance that design transformations preserve intended functionality
- Early detection of bugs that simulation might miss

— Automated comparison between RTL and gate-level netlists

- Faster design closure and improved confidence in signoff quality

Cadence Conformal LEC specializes in handling large, complex designs
efficiently, making it a preferred choice in the semiconductor industry.

Getting Started with Cadence Conformal LEC

If you're new to Cadence Conformal LEC, starting with the right setup and
understanding the basic workflow can save you hours of frustration.

Installation and Environment Setup

First, ensure you have the correct license and installation package from
Cadence. The tool typically runs on Linux environments, so having a supported
OS like CentOS or RHEL is recommended. After installation, set up environment
variables like “CONFORMAL_HOME' and update your “PATH so you can invoke

Conformal commands from the shell easily.

Basic Workflow Overview

The general flow of a Conformal LEC project involves:

1. **Input Preparation**: Gather your RTL files and synthesized netlists.
These can be in Verilog, VHDL, or EDIF formats.

2. **Run Setup Scripts**: Create a setup file (usually a " .tcl® script) where
you specify design files, top modules, and any configuration options.

3. **Launch the Tool**: Execute the conformal command to start the
equivalence checking process.

4., **Review Reports**: Analyze the output reports for equivalence results,
any mismatches, or warnings.

5. **Debug Discrepancies**: Use Conformal’s debug capabilities to pinpoint
and resolve equivalence failures.

Key Features of Cadence Conformal LEC Explored

Understanding the core features will help you leverage the tool to its full
potential.

Netlist and RTL Comparison

Conformal LEC excels at comparing RTL against synthesized gate-level
netlists. It supports various design languages and can handle complex
constructs like clock gating and resets. This feature helps verify that
synthesis tools have not altered the intended design functionality.

Incremental Equivalence Checking

One of the most powerful aspects of Conformal LEC is its ability to handle
incremental verification. When only parts of the design change, you don’t
need to re-run equivalence checks on the entire design. Instead, incremental
LEC focuses on affected modules, saving considerable time during regression
runs.

Handling Complex Design Constructs

Modern SoC designs include multiple clock domains, asynchronous resets, and
power management features. Conformal LEC provides advanced options to
properly interpret these constructs, ensuring accurate equivalence checking
without false positives.

How to Write a Cadence Conformal LEC Setup
Script

The setup script is the heart of your equivalence checking session. It tells
the tool which files to consider, which top modules to verify, and how to
handle specific design features.

Basic Setup Script Structure

A typical Conformal LEC setup script includes commands such as:

T tel

Load design files

add_design_file —-rtl rtl _design.v
add_design_file —gate synthesized_netlist.v

Define top modules
set_top rtl_top_module
set_top gate_top_module
Run equivalence check

run_equivalence

This minimal script instructs Conformal to load the RTL and gate-level
designs, sets the top modules for each, and performs the equivalence check.

Advanced Options in Setup Scripts

You can customize the verification by adding commands like:

- "set_clock’™ to define clock signals explicitly

- ‘add_ignore’ to exclude certain signals or modules from comparison
- “set_reset’ for asynchronous or active-low resets

- “set_power to account for power domains or retention cells

These commands help tailor the tool’s behavior to your specific design needs
and reduce false mismatch reports.

Tips for Effective Use of Cadence Conformal LEC

Maximizing the benefits of Conformal LEC requires some practical know-how.
Here are tips from experienced users:

Organize Your Design Files Clearly

Keep your RTL and gate—-level netlists organized in separate directories with
consistent naming conventions. This helps prevent errors in file referencing
within setup scripts.

Use Incremental Checks Whenever Possible

Running full equivalence checks on large designs can be time-consuming. Make
use of incremental checking to focus only on changed portions, speeding up
regression cycles.

Leverage Debug Features

When mismatches occur, use generated reports and waveforms to drill down to
the root cause. Conformal provides options to dump failing signals, trace
logic cones, or even generate debug scripts.

Match Clocks and Resets Precisely

Equivalence failures often stem from clock domain mismatches or reset
handling differences. Define these signals explicitly in your setup to avoid
false positives.

Common Challenges and How to Overcome Them

Even with a powerful tool like Cadence Conformal LEC, some challenges are
common. Understanding and addressing them improves your verification
experience.

False Mismatches Due to Synthesis Optimizations

Synthesis tools sometimes optimize away logic or rename signals, causing
apparent mismatches. To handle this:

— Use the "add_equiv® command to specify equivalent signals manually.
- Exclude non-functional signals from comparison.

— Utilize ‘smart’ matching features in Conformal that recognize common
synthesis transformations.

Multi-Clock Domain Issues

Designs with multiple asynchronous clocks can confuse equivalence checking.
Ensure clocks are properly defined, and use clock domain crossing constraints
to help the tool understand timing relationships.

Handling Black Boxes and IP Blocks

Third-party IP or black-box modules may not have RTL sources available for
comparison. Isolate these blocks in the setup script or use abstract models
to avoid mismatches.

Integrating Cadence Conformal LEC into Your
Verification Flow

For modern design teams, Conformal LEC fits into a broader verification
ecosystem, often integrated with other Cadence tools like JasperGold or
Xcelium.

Automating Equivalence Checking

By scripting Conformal runs and integrating them into build systems (e.g.,
Jenkins), you can automate regression equivalence checks. This continuous
verification approach catches issues early in the design cycle.

Combining Formal and Simulation

While simulation tests design behavior under various scenarios, formal
equivalence checking with Conformal LEC ensures that the implementation
matches the intended RTL logic thoroughly, complementing simulation coverage.

Conclusion: Becoming Proficient with Cadence
Conformal LEC

Mastering Cadence Conformal LEC is a valuable skill for anyone involved in
digital design verification. This user guide overview has highlighted the
essentials—from understanding the tool’s purpose, setup, and features to
practical tips for effective use and troubleshooting. By integrating
Conformal LEC into your verification flow and leveraging its advanced
capabilities, you can improve design quality, reduce verification time, and
gain confidence in your chip’s correctness. Keep exploring the official
documentation and experimenting with different options to unlock the full
potential of this powerful equivalence checking tool.

Frequently Asked Questions

What is the Cadence Conformal LEC User Guide?

The Cadence Conformal LEC User Guide is an official documentation that
provides detailed instructions on how to use the Logical Equivalence Checking
(LEC) tool within the Cadence Conformal suite. It covers installation, setup,
command references, and best practices.

Where can I find the Cadence Conformal LEC User
Guide?

The Cadence Conformal LEC User Guide is available on the Cadence support
website or through the Cadence Help portal, accessible to licensed users. It

can also be accessed via the Conformal tool’s help menu.

What are the main features explained in the Cadence
Conformal LEC User Guide?

The guide explains features such as design setup, equivalence checking flows,
constraint handling, reporting, debugging mismatches, and integration with
other Cadence tools.

How does the Cadence Conformal LEC User Guide help
with debugging mismatches?

The guide provides step-by-step instructions on interpreting mismatch
reports, isolating differences, and applying debug techniques to resolve
logical equivalence issues between designs.

Does the Cadence Conformal LEC User Guide cover
scripting and automation?

Yes, the User Guide includes sections on using Tcl scripts and command-line
options to automate equivalence checking processes and customize tool
behavior.

Can the Cadence Conformal LEC User Guide help new
users get started with LEC?

Absolutely. It contains introductory chapters that guide new users through
basic concepts, initial setup, and running their first equivalence check.

What types of designs are supported according to the
Cadence Conformal LEC User Guide?

The guide specifies support for RTL, gate-level netlists, synthesized
designs, and various design formats commonly used in ASIC and FPGA
verification.

How often is the Cadence Conformal LEC User Guide
updated?

The User Guide is typically updated with each major release of the Conformal
tool, reflecting new features, enhancements, and changes in workflows.

Are there troubleshooting tips available in the
Cadence Conformal LEC User Guide®?
Yes, the guide includes a troubleshooting section that addresses common

issues, error messages, and recommended solutions to help users resolve
problems efficiently.

Additional Resources

Cadence Conformal LEC User Guide: Unlocking Advanced Formal Verification

cadence conformal lec user guide serves as an essential resource for
engineers and verification professionals aiming to harness the full potential
of Cadence’s Conformal Logic Equivalence Checking (LEC) tool. As
semiconductor designs grow increasingly complex, ensuring that different
representations of a design remain functionally equivalent is critical. The
Cadence Conformal LEC user guide not only offers detailed instructions for
effective tool usage but also provides insights into best practices and
troubleshooting strategies, making it indispensable for both novice and
experienced users.

Understanding Cadence Conformal LEC

Cadence Conformal LEC is a formal verification tool designed to perform logic
equivalence checking between two versions of a digital design—commonly the
RTL and gate-level netlist. It helps verify that optimizations, synthesis
transformations, or changes during design stages do not alter the intended
functionality. Unlike simulation-based verification, which tests specific
input scenarios, Conformal LEC uses mathematical algorithms to prove
equivalence exhaustively.

The user guide delves into the fundamental architecture of the tool,
describing how it leverages advanced techniques like formal analysis, SAT
solving, and structural analysis to expedite verification. The guide also
explains how Conformal LEC fits into the broader Cadence verification
ecosystem, often working alongside tools like JasperGold for enhanced
coverage.

Key Features Highlighted in the User Guide

The Cadence Conformal LEC user guide outlines several features that
distinguish the tool in the competitive landscape of logic equivalence
checking:

e Scalability: Ability to handle designs ranging from small IP blocks to
large SoCs with billions of gates.

e Incremental Checking: Supports iterative design flows by efficiently
verifying only the changed portions of a design.

e Debugging Support: Provides detailed reports and graphical
representations of mismatches to facilitate swift root cause analysis.

e Automatic Constraint Handling: Integrates design constraints seamlessly,
reducing manual effort and potential errors.

e Integration with Verification Flows: Compatible with scripting
interfaces and continuous integration pipelines.

These capabilities are not only described in procedural terms but are also
accompanied by practical examples, helping users appreciate their application
in real-world scenarios.

Getting Started: Installation and Setup

The Cadence Conformal LEC user guide begins with a thorough walkthrough of
installation prerequisites, environment configuration, and initial setup.
Users are guided through:

1. System requirements, including supported operating systems and hardware
recommendations.

2. Licensing setup, which is crucial for enabling tool features and
ensuring compliance.

3. Configuration of environment variables and paths to integrate with
existing Cadence tools.

4., Verification of installation through sample projects, enabling users to
confirm operational readiness.

The guide emphasizes the importance of aligning the tool version with the
rest of the software stack, as mismatches can lead to compatibility issues.

Command-line Interface and GUI Usage

One of the strengths of Conformal LEC is its versatile user interface
options. The user guide details how to operate the tool via:

e Command—-line Interface (CLI): Suitable for batch processing and
automation, the CLI section outlines key commands, syntax, and scripting
tips to streamline workflows.

e Graphical User Interface (GUI): Ideal for interactive analysis, the GUI
chapter explains navigation, report visualization, and graphical
debugging tools.

By covering both interfaces, the guide caters to diverse user preferences and
use cases, ensuring accessibility for teams with varying expertise levels.

Workflow and Best Practices

Central to the Cadence Conformal LEC user guide is the detailed exposition of
typical equivalence checking workflows. From preparing input files to
interpreting results, the guide encourages a methodical approach:

Preparation of Input Files

The guide stresses the importance of consistent and clean input design
representations. It advises on:

e Ensuring RTL and netlist files are properly preprocessed and free of
synthesis artifacts that could confound equivalence checking.

e Managing constraints files to represent don’t-care conditions and timing
assumptions accurately.

e Using blackboxing judiciously to exclude non-essential IP blocks while
maintaining verification integrity.

Running the Equivalence Check

Users are walked through command sequences and parameter tuning strategies to
optimize runtime and coverage. The guide explains approaches to handle common
challenges such as:

e Dealing with intentional design differences like pipeline balancing or
retiming.
e Employing heuristics and abstraction techniques to reduce complexity.

e Utilizing incremental checking to focus on changes and accelerate
verification cycles.

Analyzing and Debugging Results

When equivalence fails, the guide equips users with diagnostic tools
including:

e Mismatch reports that pinpoint the exact location and nature of
discrepancies.

e Simulation waveforms generated from counterexamples to aid in
understanding failures.

e Interactive debugging sessions through the GUI to traverse design
hierarchies and signals.

Such capabilities are crucial in shortening the feedback loop during design
iterations.

Comparative Insights and Industry Applications

In the broader context of logic equivalence checking tools, the Cadence
Conformal LEC user guide provides comparative insights that help users
evaluate its fit relative to alternatives like Synopsys Formality or Mentor
Questa LEC. It highlights Conformal’s advantages in scalability, user
interface flexibility, and seamless integration within Cadence’s toolchain.

Industries such as semiconductor IP development, automotive electronics, and
data center chip design benefit significantly from Conformal LEC’s robust
verification capabilities. The user guide includes case studies illustrating
how the tool has enabled faster signoff cycles and reduced verification costs
in complex projects.

Pros and Cons Addressed in the Guide

While the guide primarily focuses on maximizing tool benefits, it also
candidly discusses limitations:

e Pros: High accuracy, extensive debugging features, and strong automation
support.

e Cons: Steep learning curve for beginners and resource-intensive
processing on very large designs.

This balanced view equips users with realistic expectations and encourages
proactive planning when adopting the tool.

Advanced Topics Covered in the User Guide

For power users, the guide explores advanced functionalities such as:

e Custom Scripting: Leveraging TCL scripts to customize workflows and
automate repetitive tasks.

e Integration with Continuous Integration/Continuous Deployment (CI/CD):
Embedding equivalence checking into automated build pipelines.

e Formal Property Verification: Combining equivalence checking with
property checking to enhance design correctness assurance.

These sections demonstrate how the Cadence Conformal LEC user guide is not
merely an instruction manual but a strategic document for elevating
verification methodologies.

Exploring the Cadence Conformal LEC user guide reveals it as a comprehensive
companion for mastering logic equivalence checking. Its depth and clarity
empower engineers to confidently apply formal verification techniques,

ultimately supporting the creation of reliable and high-quality semiconductor
products.

Cadence Conformal L.ec User Guide

Find other PDF articles:

https://espanol.centerforautism.com/archive-th-114/Book?ID=D0Oul18-9981 &title=medical-assistant-i
nterview-questions-quizlet.pdf

cadence conformal lec user guide: The Functional Verification of Electronic Systems Brian
Bailey, 2005-01-30 Addressing the need for full and accurate functional information during the
design process, this guide offers a comprehensive overview of functional verification from the points
of view of leading experts at work in the electronic-design industry.

cadence conformal lec user guide: A Practical Approach to VLSI System on Chip (SoC)
Design Veena S. Chakravarthi, 2019-09-25 This book provides a comprehensive overview of the
VLSI design process. It covers end-to-end system on chip (SoC) design, including design
methodology, the design environment, tools, choice of design components, handoff procedures, and
design infrastructure needs. The book also offers critical guidance on the latest UPF-based low
power design flow issues for deep submicron SOC designs, which will prepare readers for the
challenges of working at the nanotechnology scale. This practical guide will provide engineers who
aspire to be VLSI designers with the techniques and tools of the trade, and will also be a valuable
professional reference for those already working in VLSI design and verification with a focus on
complex SoC designs. A comprehensive practical guide for VLSI designers; Covers end-to-end VLSI
SoC design flow; Includes source code, case studies, and application examples.

cadence conformal lec user guide: CPU Design Chandra Thimmannagari, 2005-12-02 I am
honored to write the foreword for Chandra Thimmannagari’s book on CPU design. Chandra’s book
provides a practical overview of Microprocessor and high end ASIC design as practiced today. It is a
valuable addition to the literature on CPU design, and is made possible by Chandra’s unique
combination of extensive hands-on CPU design experience at companies such as AMD and Sun
Microsystems and a passion for writing. Technical books related to CPU design are almost always
written by researchers in academia or industry and tend to pick one area, CPU architecture/Bus
architecture/ CMOS design that is the area of expertise of the author, and present that in great
detail. Suchbooks are of great value to students and practitioners in that area. However, engineers
working on CPU design need to develop an understanding of areas outside their own to be effective.
CPU design is a multi dimensional problem and one dimensional optimization is often
counterproductive.

cadence conformal lec user guide: User's Manual for Program CONFORM (CONFORMal
Contact Stress Problems). Burton Paul, 1978

Related to cadence conformal lec user guide

Cadence[JJJAlItium[J000000ADON - 00 5.00ADOCadence[0000000000 O0ADOOOOO0DOOCadence(00
UuuoooooooobbbbbboEOHHOOHOOOOOOooOooooeooo0

60[JJJCADENCE-[JI0000000CO000000CD - 0000CO2000000000000000000000000C030000000C000
[CadenceI0000000ONO00000OCOOCO0O0 COOO

O000Cadence(] - [0 O00Cadence[J0000000Cadence000000000000000000000C000000C000000C000000
00000ddooooooooooiioon

https://espanol.centerforautism.com/archive-th-110/pdf?title=cadence-conformal-lec-user-guide.pdf&trackid=fQu72-1266
https://espanol.centerforautism.com/archive-th-114/Book?ID=DOu18-9981&title=medical-assistant-interview-questions-quizlet.pdf
https://espanol.centerforautism.com/archive-th-114/Book?ID=DOu18-9981&title=medical-assistant-interview-questions-quizlet.pdf

(0NCadence ICOIOOPDFIONO000 - OO0 Cadence SKILL[JCadence[J[Cadence EDANIIOONOO00CO0O0
OCadence EDA[J000000CC0000 OOODOSKILLODOOOOODOCOO00OCO

OCadence[]0000000000000? - OO 00000OOOOCCCOOOO Cadence [0 OOOO000000000C 1. DOOCCCCCCOOOO
SAD ADC[II000000O0000D 000t boCO0oooo

Cadence[JJ00000000000000C0000 - 00 Cadence0000000000C0O00CO000C DOOOODOOOOCOcadenceO0
U0O0O0D0OOOOOOOOOOOOOOOOOOOOO0O0O0 OO0

cadence virtuoso [J0000000000C0000000 hiSetFontOO000OOOO0000OOCOO000DOCOO000DOCOO0000O
O0000hiSetFont[J[Jexport CDS 2DFORM FONT SCALING=1{00000000 O
Cadence17.4DRCIJ0I00PRCIIOIOOON - OO0 Cadence Allegro 17.4000DRCHIO000000000000ObugO
0000000000ODRCO000000000000

Cadence[]Altium Designer{|[J10000 - 00 cadence (00000000 3D 00 ad 0000 00000CO0O000CCOO ADO
000000000000 000000000000000000000O0cadence (00

0000000CO000DO0000O000C - 00 DODOODO0OODO0OCOOO0CO00ODONOODO00COO00CO000DO000cadence000
0 200000000000C00000DOC000D 0o

Cadence[[JJAltium[J0000000ADI0 - 00 5.00ADOCadence[0000000000 DOADOOOCOOOOOCadence 000
U0dD0000DOCOODOCOODOCOODOCOOOOCOOOOCOOOOOO0Q

60JJCADENCE-INI0000000000000000 O00000200000000000000000000000000300000000000
(Cadence(J00000000CO000O000CO0000 OO

0000Cadence(] - [0 J00Cadence[J0000000Cadence0000000000000C0CCCOOO00OOO00O000000C000000O
U0OO0O00O000000C000000

(00Cadence ICIIOPDFIIIO000 - 00 Cadence SKILL[JCadence[[JJ000Cadence EDAJOO00O00O00OO
OCadence EDAQNN00CCCO0000C DOCOOSKILLOOOOOOOOOOOCCOOOO

(ICadence[JI000000000000? - OO0 DOOOOOOOODOOOOCO Cadence 00 O00O0OOOOO000C 1. DOOOOCOOOODOO
SAD ADC[I00000C000000C 0oCU boOooooo

Cadence[JJ0000000000000000000 - 00 Cadence0d000000000C0000CO000C DOOOODOOOOCOcadenceO0
UOO0O0DOOOOOOOOOOOOOOOOOOOOOOOO0O0 OO0

cadence virtuoso [JJJ0000000000000O00000 hiSetFontJOONO000OOO00OoD000OoO0DDooDODOoOO0DOo0
N0000hiSetFont[Jexport CDS 2DFORM FONT SCALING=100000000 0
Cadence17.4DRCII0000PRCOOO00000C - OO Cadence Allegro 17.4000DRCOO0000000000000CbugQ
0000000000ODRCODODOO000000O

Cadence[]Altium Designer{|[00000 - 00 cadence OO0000000 3D 00 ad 0000 00000COO0000CCOO ADO
000000000000 0000000000000ooboOO0000cadence 0

0000000CO0000O00000000 - 00 DODOODO000DO0OCOO00CO000DO00ODO00COO00CO000D0000cadence 000
0 2000000000000C00000000000 0o

Cadence[[JJAltium[JJJ000000ADI] - 00 5.00ADCadence[[J000000000 DOADOOOOOOOOCadence000
HOO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO0OM

60JJCADENCE-[J000000000000000000 - 0000002 o0000000000000000000000000300000000000
(Cadence[JJ000000000000CO000000O000 OO0

J000Cadence(] - [0 J00Cadence[J0000000Cadence00000000000000CCOOOO000OO00O0000000000000O
U0OO0O0dO0o0O0O0CO00000

(00Cadence ICOOOOPDFOO00000 - OO0 Cadence SKILL[JCadence[J0000Cadence EDANOO0000CO0000
OCadence EDAQNN00CCCOO000C DOCOOSKILLOOOOOOOOOOOCCOOOOO

(ICadence[1000000000000 - OO0 DOOOOOOOODOOOOCO Cadence 00 O00O0O0O0OO00C 1. DOOOOCOOOODOO
SAD ADCIINO000O0000000 D000 DO0oOO0O

Cadence[JJ0000000000000000000 - OO0 Cadence000000000000000000000 OOOOOOODOOCOOcadencedn
HOO0O0OOOOOOOOOOOOOOOOOOOOOOOOOOO0 OO0

cadence virtuoso [JJJ000000000000000000 hiSetFont 0000000000000 o000Do000Do000Do0000o00O
O0000hiSetFontJexport CDS 2DFORM FONT SCALING=1000000000 O
Cadence17.4DRCII0000PRCO0O00000C - 00 Cadence Allegro 17.4000DRCOO0000000000000Cbug
0000000000ODRCODODOOD00000O

Cadence[JAltium Designer{]J000 - 00 cadence 00000000 3D 00 ad 0000 000000000000000C ADQ

000000000000 00O0000000DO000DO000000cadence [O0

00000000000CO00000000C0 - 00 0000ODOOCO00O00DOODOOoO00OOODOOCO00000D00D000000cadenceJO00
0 2000000000000000000000000 00

Cadence[JJJAltium00000000ADO0 - 00 5.00ADOCadence[0000000000 DOADOOOCOOOOCadence000
HoodoodooodooOtDbdooOtDbdoOddtobdooOtoOdooOoo

60JJICADENCE-JII00000000000C0000 dOODOO2op00nd0bDOoOONdNNOOOD0ODO300000000000
OCadence[J000000000000000000000CC 0OOO

0J000Cadence(] - [0 O00CadenceJ000000Cadence]0000000000000C0000CO000CO000C0O00C0O00C000
Hobo0dobodobdtbbooooo

(0NCadence ICOOONPDFIONO000 - OO0 Cadence SKILL[JCadence[J0Cadence EDANIIOONOO0OOO0O0
(JCadence EDA[INN0000000000 DOOOOSKILLOOODOOOOOOOOCOOOO

CadenceJ0000000000000? - 00 DOO0DOOOOOOOOOOO Cadence 00 DOO0OOOOO0OOOOO 1. 0O0OOOOOOCOCO
SAD ADCII000C00000000 0000 DO0000000

Cadence[]10000000000000000000 - OO0 CadenceJ000000000000000000000 000000OOOOOOcadenceO0

(i00000Oo0ROO0ORDOoORoooOOooORDOo0 boooa
cadence virtuoso [J0000000000000000000 hiSetFontOOO000000000CO000CO000COO000000D0000C00

O0000hiSetFont[Jexport CDS 2DFORM FONT SCALING=1000000000 O
Cadence17.4DRCI0000PRCOIO000OC - OO Cadence Allegro 17.4000DRCOO0000000000000CbugQ
0000000000ODRCODODOO0000000

Cadence[JAltium Designer{]J00000 - 00 cadence 00000000 3D [0 ad 0000 O00O00COOOCOOO0OC ADO
000000000000 000000000000000CO000D00cadence 000

000000000000000000C0OD - 00 o0ooooo000000oooooooibbboOOdOOOOOoo000000000000cadence 000
0 200000000000000O000000000 00

Cadence[[JJAltium[J0000000ADI] - 00 5.00ADOCadence[I000000000 DOADOOOCOOOOOCadence000
HUbHobotobobobobobobobobobotobototoMoMoMoHam

60JICADENCE-JII0000000000000000 dOO0OO2o0p000000DO0DO00000D0OOD000O300000000000
OCadence[I0000000000000000000CCCD OO

0J000Cadence[] - [0 O00CadenceJ000000Cadence]0000000000000C0000C0000C0000C0O00C0000C000
UOO0O0O0OOOOOOO0O0O0OO0

J00Cadence ICOIIOPDFOIIO000 - 00 Cadence SKILL[JCadence[00Cadence EDANIOO0ON00O00O0
(Cadence EDANNNINO00000000 OOOOOSKILLOOOOOOOOOOOOOOOOO

OCadence[]]]000000000000? - 00 0000OOOOOCCOOOOCO Cadence [0 OO0O000000000C0 1. DOOCCCCCCOOOOO
SAD ADC[I0000OC000000C DOCU bOOooooO

Cadence[]]0000000000000000000 - OO0 Cadence[J000000000000000000000 000000OOOOOOcadence00
U00000OCODOODOOODODOOOODOOE0ODOO000 Doon

cadence virtuoso [J110000000000C0000000 hiSetFontOO000OCDDOO000OCCOO000OOCOO00000COO00000O
O0000hiSetFont[JJexport CDS 2DFORM FONT SCALING=1000000000 O
Cadencel7.4DRCIII000DRCOIONOINON - OO0 Cadence Allegro 17.4000DRCOININ00DO0O00O0OObug
0000000000ODRCODODOO0000000

Cadence[]Altium Designer{|[J10000 - (0 cadence (00000000 3D 00 ad 0000 00000CO00000CCO0 ADO
000000000000 DO00O000000O0DO00000000cadence [0

000000000000000000CCOD - 00 000oooo000000o00o0ooiitiiiiiOOOoOo0000000000000cadence 000
0 200000000000C0O0000D0C000n 0o

Related to cadence conformal lec user guide

Cadence Introduces the Conformal Smart Logic Equivalence Checker (Design-Reuse8y) SAN
JOSE, Calif., Sept. 13, 2017 - Cadence Design Systems, Inc. (NASDAQ: CDNS) today announced the
Cadence® Conformal® Smart Logic Equivalence Checker (LEC), the next-generation equivalence
checking

Cadence Introduces the Conformal Smart Logic Equivalence Checker (Design-Reuse8y) SAN

JOSE, Calif., Sept. 13, 2017 - Cadence Design Systems, Inc. (NASDAQ: CDNS) today announced the

Cadence® Conformal® Smart Logic Equivalence Checker (LEC), the next-generation equivalence
checking

Back to Home: https://espanol.centerforautism.com

https://espanol.centerforautism.com

